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We analyze transport of local magnetization and develop schemes to control transport behavior in finite
spin-1 /2 Heisenberg chains and spin-1 /2 Heisenberg two-leg ladders at zero temperature. By adjusting pa-
rameters in the Hamiltonians, these quantum systems may show both integrable and chaotic limits. We provide
examples of chaotic systems leading to diffusive and to ballistic transport. In addition, methods of coherent
quantum control to induce a transition from diffusive to ballistic transport are proposed.
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I. INTRODUCTION

A complete understanding of transport behavior in many-
body systems is one of the utmost challenges in fundamental
studies of nonequilibrium statistical mechanics. In the clas-
sical domain, it is widely believed that chaotic systems
should show diffusive �normal� transport, whereas integrabil-
ity should be associated with ballistic �abnormal� transport
�1,2�, although normal transport has also been verified for a
nonchaotic system �3�. In the quantum domain, the condi-
tions that determine specific transport behaviors are still un-
der debate, but here also, the main conjecture is of the cor-
respondence integrable-ballistic and chaotic-diffusive �4�.
Several theoretical approaches have been undertaken to ad-
dress this issue, including attempts to derive the Fourier law
from a microscopic foundation by applying the Hilbert space
average method �5� and by numerically studying transport of
heat in finite chaotic and nonchaotic systems coupled to heat
reservoirs �6,7�; analysis of the transport behavior of local
magnetization in isolated finite systems at zero temperature
�8�; new advances toward the problem of quantum thermal-
ization �9�; comparisons of the results for conductivity in
integrable and chaotic systems at finite temperature and in
the thermodynamic limit �10–14�, a subject of intense discus-
sion here being the possibility of ballistic transport in nonin-
tegrable quasi-one-dimensional systems �15–17�; numerical
studies of spin diffusion at long times at infinity temperature
�18�; as well as studies of transport properties near the metal-
insulator transition �19–21�.

Investigations of transport behavior in the particular case
of quasi-one-dimensional spin-1 /2 systems have been highly
motivated by experiments in low-dimensional magnetic
compounds, such as copper oxide �cuprate� systems, where
ballistic behavior has been observed for heat conduction
�22–24�, and also for magnetization, as revealed by nuclear
magnetic resonance �NMR� experiments �25�. These com-
pounds are described by models of interacting spins-1 /2 ar-
ranged in structures such as chains, two-leg ladders, and
square lattices �26�. Clean spin-1 /2 Heisenberg chains with
only nearest-neighbor interactions are integrable models
solved with the Bethe Ansatz method �27�, whereas two-
dimensional lattices are chaotic �28� and two-leg spin ladder

systems become chaotic when the interchain and intrachain
interactions are of the same order �29�.

In Ref. �8�, an isolated isotropic finite spin-1 /2 Heisen-
berg chain at zero temperature and with only nearest-
neighbor interactions was considered in the analysis of trans-
port of local magnetization in both cases: When the system
was clean and therefore integrable, and when random on-site
disorder led to the onset of quantum chaos. Free boundary
conditions were assumed. A bouncing behavior of the local
magnetization was observed in the integrable regime and in-
terpreted as a hint of ballistic transport, whereas for the cha-
otic system the local magnetization showed an exponential
relaxation to equilibrium, which was considered a reflection
of diffusive transport.

The first part of this paper is also dedicated to the inves-
tigation of transport of local magnetization in spin-1 /2
Heisenberg systems, but different ways to induce chaos are
dealt with. The goal is to resolve whether nonintegrability
may have a unique correspondence with the exponential de-
cay verified in �8�. The integrability-breaking terms consid-
ered are on-site disorder described either by �i� randomly
distributed Zeeman energies �30� or by �ii� a few defects
placed on specific positions of the chain �31�; and couplings
to more surrounding spins such as �iii� next-nearest-neighbor
interactions and �iv� interchain interactions, as typical of
two-leg spin ladder systems. An exponential decay is ob-
served only for �i� and �iv�. For the finite systems studied,
few defects lead to a behavior that sometimes resembles lo-
calization, the exponential behavior appearing only under
very special conditions, while next-nearest-neighbor interac-
tions generate oscillations of the local magnetization that are
similar to those seen for the integrable system, although
faster. These observations support the conjecture that chaos
might not be a sufficient condition for normal transport.

The second part of this work focuses on the analysis of
methods of coherent quantum control, the so-called dynami-
cal decoupling �DD� schemes, as potential tools to manipu-
late transport behavior. DD schemes consist of sequences of
external control operations that average out unwanted contri-
butions to the system Hamiltonian. These methods have long
been applied in NMR spectroscopy �32,33�, where the goal is
to modify the nuclear spin Hamiltonian to eliminate or scale
selected internal interactions. More recently, DD has ad-
dressed the removal of interactions between the target system
and its environment �34� and has been put in a general
control-theoretic framework �35�. It has also been considered*lsantos2@yu.edu
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in studies of transport of information �36�. Here, we intro-
duce DD sequences that suppress the effects of terms leading
to quantum chaos, the purpose being the approach to the
ballistic transport behavior verified for the integrable system.

The paper is organized as follows. Section II explains
how the identification of the chaotic regime is performed and
describes the models to be considered. Section III presents
the results for the transport of local magnetization for sys-
tems in different regimes. Section IV introduces DD se-
quences to control transport behavior and shows, as an illus-
tration, results for the sequence that cancels the effects of
on-site disorder. Concluding remarks are given in Sec. V.

II. QUANTUM CHAOS AND SYSTEM MODEL

A. Signature of quantum chaos

For quantum systems, chaos may be identified by analyz-
ing the distribution of spacings s between neighboring en-
ergy levels �37,38�. Quantum levels of integrable systems
tend to cluster and are not prohibited from crossing, the typi-
cal distribution is Poissonian,

PP�s� = exp�− s� . �1�

In contrast, nonintegrable systems show levels that are cor-
related and crossings are strongly resisted, the level statistics
is given by the Wigner-Dyson distribution. The exact form of
the distribution depends on the symmetry properties of the
Hamiltonian. In the case of systems with time reversal in-
variance it is given by

PWD�s� = ��s�/2 exp�− �s2/4� . �2�

To analyze the transition from integrability to chaos, the
quantity �, defined as

� �
�0

s0�P�s� − PWD�s��ds

�0
s0�PP�s� − PWD�s��ds

, �3�

was introduced in �39�, where s0�0.4729 is the first inter-
section point of PP and PWD. For an integrable system
�→1, while for a chaotic system �→0. The critical value
below which the system is considered chaotic is chosen to be
�=0.3 �40�.

B. Heisenberg model

We study homogeneous and isotropic spin-1 /2 Heisen-
berg chains with open boundary conditions, as described by
the Hamiltonian

H = Hz + HNN + HNNN

= �
n=1

L

�nSn
z + �

n=1

L−1

JS�n · S�n+1 + �
n=1

L−2

J�S�n · S�n+2. �4�

Above, � is set equal to 1; S�n=�� n /2 is the spin operator at
site n, �n

x,y,z being the Pauli operators; and L corresponds to
the number of sites. The parameter �n is the Zeeman split-
ting of spin n as determined by a static magnetic field in the
z direction. The system is clean whenever all sites have the

same energy splitting �n=�, and it is disordered when de-
fects characterized by different energy splittings �n=�+dn
are present. J and J� are the interaction strengths of nearest-
neighbor �NN� and next-nearest-neighbor �NNN� couplings,
respectively, and are assumed to be constant.

All calculations in this work are performed in the basis
consisting of eigenstates of the total spin operator in the z
direction, Sz=�n=1

L Sn
z . In this basis, the NN and NNN Ising

interactions, Sn
zSn+1

z and Sn
zSn+2

z , contribute to the diagonal
elements of the Hamiltonian, while the XY terms, Sn

xSn+1
x

+Sn
ySn+1

y and Sn
xSn+2

x +Sn
ySn+2

y , constitute the off-diagonal ele-
ments. The role of the XY terms is to transfer excitations
through the system by exchanging the position of nearest-
and next-nearest-neighboring spins pointing in opposite di-
rections.

Also considered here are two-leg spin ladder systems cor-
responding to two coupled spin chains as described by

H = �
m=1

2

�Hz,m + HNN,m� + H1,2

= �
m=1

2 	�
n=1

L/2

�n,mSn,m
z + �

n=1

L/2−1

JS�n,m · S�n+1,m

+ �

n=1

L/2

J�S�n,1 · S�n,2, �5�

where �n and J are as before, m determines the chain in
which the site is positioned, and J� characterizes the strength
of the interchain interaction.

In order to derive meaningful level spacing distributions,
before diagonalizing the Hamiltonian and unfolding the
spectrum �37,38�, all trivial symmetries of the system need to
be identified. The analysis of symmetries is necessary, be-
cause a Poisson distribution may appear whenever Wigner-
Dyson distributions from different symmetry sectors are
mixed, which may lead to erroneously interpreting the sys-
tem as integrable. In both models considered here, Sz is con-
served, therefore, instead of diagonalizing matrices of di-
mension 2L, we study the largest subspace. For L even, it
corresponds to the sector with Sz=0 and dimension
N= � L

L/2 �=L! / ��L /2�!�2. Depending on the parameter values,
Hamiltonians �4� and �5� may also exhibit the following
symmetries �28�: Invariance under lattice reflection, which
leads to parity conservation; and conservation of total spin

S2= ��n=1
L S�n�2, that is �H ,S2�=0 �S2 symmetry�. Notice also

that the Heisenberg model with a magnetic field does not
commute with the conventional time-reversal operator, how-
ever, the distribution associated with its chaotic regime is
still given by Eq. �2�, as discussed in �28,37�.

III. TRANSPORT OF LOCAL MAGNETIZATION

In studies of transport properties, the most popularly used
method is the Green-Kubo formula �41�. However, the appli-
cation of this formula for the treatment of heat transport has
been criticized and the use of the Hilbert space average
method to demonstrate the emergence of heat diffusion from
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microscopic models has been suggested as an alternative �5�.
This approach has been extended to the analysis of transport
of magnetization in Ref. �8�.

Here, as in �8�, we study the transport of local magneti-
zation as defined by

M�t� � ���t���
n=1

L/2

Sn,m
z ���t�
 . �6�

where ���t�
 is the state of the system at instant t written in
the basis of Sz. The initial states considered come from the
sector Sz=0. For system �4�, ���0�
 has all spins pointing up
placed in the first half of the chain, while the remaining
down spins appear in the other half. For the two-leg system,
the initial state has all up spins in one chain and all down
spins in the other. We assume L=12, which leads to
M�0�=3 in both cases.

Integrable system. The clean system with only nearest-
neighbor interaction, as described by H �4� with dn=0 and
J�=0, corresponds to an integrable model solved with the
Bethe Ansatz method �27�. The dynamics for the local mag-
netization is shown on the left-hand panel at the top of Fig.
1. The bouncing behavior suggests ballistic transport �8�. In
what follows, we compare this result with the time evolution
of local magnetization for chaotic regimes induced by differ-
ent ways.

A. Chaos induced by on-site disorder

In the chain with only nearest-neighbor interactions, as
given by H �4� with J�=0, chaos may be induced if one or
more defects are present.

Random on-site disorder. Assume that the Zeeman ener-

gies are given by �n=�+dn, where dn are uncorrelated ran-
dom numbers with a Gaussian distribution, �dn
=0 and
�dndm
=d2�n,m �30�. The transition from integrability �d=0,
�→1�, to chaos �0.05	d /J	0.7, �
0.3� is indicated by �,
which is computed in the sector Sz=0 and is shown on the
right-hand panel at the top of Fig. 1. Notice that as d /J→0,
conservation of parity and total spin start playing a role. At
d /J=0, the correct evaluation of � would need to take these
symmetries into account �28�.

On the left-hand panel at the bottom of Fig. 1, we show
the time evolution of M�t� averaged over 20 realizations for
five different values of d /J in the chaotic region. As we
approach chaoticity, for d /J=0.05 and 0.1, oscillations are
still seen; whereas for d /J=0.15, 0.2, and 0.3, an exponential
decay of M�t� takes place reaching final values between 1
and 2. After the decay, the larger probability to find spins
pointing up in the first half of the chain is reflected by the
positive values of M�t�, which are obtained with the majority
of the realizations. On the right-hand panel at the bottom, we
show the behavior of a sample of realizations with d /J
=0.15: For some of them M decays to equilibrium, M �0,
indicating an equal probability to find up spins in both halves
of the chain, but for the majority of the realizations M�t�
remains positive throughout; hardly any curve reaches nega-
tive values of M.

One defect. A single defect in the middle of a chain, at
n=L /2 �or equivalently at n=L /2+1�, may lead to quantum
chaos. For L=12, this happens when 0.15	d6 /J	2.0, as
discussed in �31�. The transition to chaos is shown by � on
the left-hand panel at the top of Fig. 2. The curve is obtained
in the Sz=0 sector, but, as mentioned before, for d6 /J=0 the
correct evaluation of � would require also the consideration
of the S2 symmetry and parity conservation �28�. A way to
break the S2 symmetry and deal with larger subspaces even
when the system is integrable consists of including defects at
the edges of the chain �31,42�.
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FIG. 1. �Color online� Transport of local magnetization in a
Heisenberg chain with only nearest-neighbor interactions described
by H �4� with J�=0 and L=12. The value of � is irrelevant for the
dynamics. Left top panel: M�t� for dn=0. Right top panel: � com-
puted in the sector Sz=0 for Gaussian random on-site disorder,
�dn
=0 and �dndm
=d2�n,m. Left bottom panel: M�t� for d /J=0.05,
0.1, 0.15, 0.2, and 0.25 from bottom to top. Average over 20 real-
izations. Right bottom panel: M�t� for a sample of realizations with
d /J=0.15.
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FIG. 2. �Color online� Transport of local magnetization in a
Heisenberg chain with only nearest-neighbor interactions described
by H �4� with J�=0 and L=12. Left-hand panels: One defect on site
6, dn=0 for n�6. Right-hand panels: Two equal defects on sites 6
and 7, dn=0 for n�6,7. Top panels: Dependence of � on the value
of the defect�s�. Bottom panels: M�t� for chaotic systems.
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The transport of local magnetization is shown on the left-
hand panel at the bottom. For d6 /J=0.3, 0.5, and 1.0, even
though � indicates chaoticity, and exponential decay is not
observed. Instead, for the two smaller values, especially for
the smallest one, partial revivals are verified, whereas for
d6 /J=1.0 there occurs localization of the up spins in the first
half of the chain. In contrast, a defect place on site 7, which
shows exactly the same behavior for �, does lead to an ex-
ponential decay of M�t�—see right-hand panel of Fig. 3�43�.
The reason for the different results is the following. The
initial state �↑1↑2↑3↑4↑5↑6↓7↓8↓9↓10↓11↓12� is directly coupled

only with the state �↑1↑2↑3↑4↑5↓6↑7↓8↓9↓10↓11↓12�. When the

defect is on site 6, the hopping of the up spin from site 6 to
site 7 is not favorable, since the state loses the extra energy
from the defect site and the positive Ising energy coming
from the pair of parallel spins ↑5↑6. This explains why it
becomes easy to localize the initial state by increasing the
defect value. Contrary to that, if the defect is on site 7, the
Ising energy lost by breaking the pair of parallel spins is
regained by placing the up spin on the defect. In this sce-
nario, directly coupled states may be very close in energy,
which favors delocalization.

Two defects. Two equal defects in the middle of the chain,
at n=L /2,L /2+1, may also lead to quantum chaos. For
L=12 this happens when 0.15	d6,7 /J	2.0. The transition
to chaos is shown by � on the right-hand panel at the top
panel of Fig. 2. The curve is obtained by taking both sym-
metries into account: Conservation of parity and Sz. The re-
laxation of the local magnetization for d6,7 /J=0.3, 0.5, and
0.65 is shown on the right-hand panel at the bottom. The
decay is not exponential and M =0 is never reached, most up
spins tending to localize in the first half of the chain. This
may again be understood by comparing the energies of the
initial state and of the state it is directly coupled to.

The whole spectrum is required to obtain the plots for �
presented in Figs. 1 and 2, therefore the decision to deal with
relatively small systems, L=12. This choice was a good
compromise leading to sufficient statistics and the possibility
to run various realizations of random on-site energies. In
addition, notice that the behaviors of the local magnetization
obtained with L=12 are also reproduced with 10 and 14
spins, as shown in the two panels of Fig. 3. Thus, for the
analysis developed in this paper, a system with 12 spins is

sufficiently adequate. In order to simulate the time evolution
of M�t� in much larger systems, we could resort, for ex-
ample, to the very efficient algorithm recently proposed in
Ref. �44�.

B. Chaos induced by additional interactions

In a clean Heisenberg system with dn=0, chaos may be
induced by adding frustrating next-nearest-neighbor interac-
tions where J��J or by keeping J�=0 and adding interchain
interactions where J��J �29�. In both cases, total spin, total
spin in the z direction, and parity are conserved.

Next-nearest-neighbor interactions. Hamiltonian �4� with
dn=0 and J=J� describes a chaotic system �29�. However,
the transport of local magnetization shows oscillations simi-
lar to those observed for the integrable system, although at a
faster rate, as seen on the left-hand panel of Fig. 4. There-
fore, if the bouncing behavior of M�t� in isolated systems at
zero temperature is indeed a signature of ballistic transport,
integrability is not a necessary condition for abnormal con-
ductivity.

Interchain interaction. Hamiltonian �5� with dn=0 and
J=J� also describes a chaotic system �29�. In this case, as
shown on the right-hand panel of Fig. 4, a very fast expo-
nential decay of the local magnetization to equilibrium is
indeed verified.

The distinct behaviors of the transport of local magneti-
zation verified for different chaotic systems—Figs. 1–4—
prevent a clear correspondence between chaoticity and diffu-
sive transport. New light may be shed on the problem if this
analysis is extended to the transport of other quantities, such
as heat in open systems.

IV. CONTROL OF TRANSPORT BEHAVIOR

We propose to control transport behavior by applying DD
methods. DD schemes consist of sequences of external con-
trol operations that average out unwanted terms of the sys-
tem Hamiltonian. In the case of spin systems, the control
operations correspond to very strong magnetic fields �pulses�
able to rotate the spins and time reverse the system evolution
�32,33�. Here, we assume the ideal scenario, where the
pulses are arbitrarily strong and capable of performing in-
stantaneous rotations, the so-called bang-bang controls �34�.
Our goal is to eliminate the effects of the terms leading to
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FIG. 3. �Color online� Transport of local magnetization in a
Heisenberg chain of different sizes described by H �4� with J�=0.
Left-hand panels: Clean chains, dn=0 for 1�n�L. Right-hand
panels: chaotic systems with one defect in site L /2+1, dn=0 for
n�L /2+1 and dL/2+1 /J=0.5.
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FIG. 4. �Color online� Transport of local magnetization in a
clean Heisenberg system. Left-hand panel: H �4� with L=12,
dn=0, and J�=J. Right-hand panel: H �5� with L=12, dn=0, and
J�=J.
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quantum chaos and approach the transport behavior verified
for the integrable system shown in Fig. 1. This can be
achieved with the sequences described below, where each
sequence handles a particular integrability-breaking term.

On-site disorder. The effects of on-site disorder may be
eliminated by rotating all spins after every interval of free
evolution tj+1− tj =�t, j�N, by 180° around a direction per-
pendicular to z, for example, x, as determined by the opera-
tor,

Px = exp	− i��
n=1

L

Sn
x
 = exp�− i�Sx� .

The interaction terms remain undisturbed, but the sequence
of these rotations leads to the cancellation of the one-body
terms at every t2p= pTc, p�N, where Tc=2�t is the cycle
time �for details about relevant frames and pulse generation
see �45�, and references therein�. The propagator at a time t2p
is then given by

U�pTc� = PxU�t2p,t2p−1�Px ¯ U�t2,t1�PxU�t1,0� , �7�

where U�t�=T exp�−i�0
t Hdu� and T denotes time ordering.

By adopting the notation

U+ = exp�− i�Hz + HNN��t� = exp�− iH1�t� ,

U− = PxU�tj,tj−1�Px = Px�PxPx
†�U�tj,tj−1�Px

= − 1 exp�− i�e+i�Sx
�Hz + HNN�e−i�Sx

��t�

= − exp�− i�− Hz + HNN��t� = − exp�− iH2�t� ,

where 1 is the identity operator, we rewrite the propagator as

U�pTc� = U−U+ ¯ U−U+ = exp�− iH̄pTc� .

Above, H̄=�k=0

 H̄�k� is the average Hamiltonian �32,33�, and

the terms in the sum are obtained by using the Baker-
Campbell-Hausdorff expansion. The first two terms are

H̄�0� =
�t

Tc
�H1 + H2� = HNN,

H̄�1� = −
i��t�2

2Tc
�H2,H1� .

The sequence of pulses reshapes the Hamiltonian. In the
ideal limit of �t→0 one recovers the Hamiltonian for a
clean Heisenberg model with only nearest-neighbor cou-

plings, H̄�HNN, as desired. In Fig. 5, we show the transport
of local magnetization as modified by the above sequence for
two cases of on-site disorder: The top panels correspond to
random defects and the bottom panels to two defects in the
middle of the chain. The transport behavior for both
situations—integrable system and disordered Heisenberg
chain subjected to the DD sequence—closely coincide when
the intervals between the pulses are smaller than the recipro-
cal interaction strength, �t
J−1, as seen on the left-hand
panels. For short time evolutions, good agreement between
the curves is still verified for �t�J−1, whereas at longer
times the accumulation of residual averaging errors become

significant, this being more perceptible in the bottom right-
hand panel. To slow down error accumulation, randomized
schemes as developed in �45,46� may be incorporated to the
pulse sequence.

Interchain interactions. To decouple the two interacting
chains in a two-leg spin ladder system, we may apply a se-
quence of � pulses that rotates all spins of just one of the
chains. The pulses do not affect the intrachain interactions,
but frequently change the sign of the interchain interactions.
To eliminate the interchain couplings in the three directions,
we need a sequence of at least four pulses with two alternat-
ing directions, such as

U�Tc = 4�t� = Py,2U��t�Px,1U��t�Py,2U��t�Px,1U��t� ,

where

Px,1 = exp	− i��
n=1

L/2

Sn,1
x 
 ,

Py,2 = exp	− i��
n=1

L/2

Sn,2
y 
 .

The chain which is subjected to the pulses is also alternated
to guarantee the cancellation of the one-body terms as well.

At any time t4p= pTc=4p�t, we then have H̄=HNN,1+HNN,2
+O��t�.

Next-nearest-neighbor interactions. A possible sequence
to eliminate next-nearest-neighbor interactions involves eight
� pulses. The controls are applied to specifically chosen
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FIG. 5. �Color online� Transport of local magnetization in a
Heisenberg chain with only nearest-neighbor-interactions described
by H �4� with J�=0 and L=12. �Blue� Curves showing a fast decay
to M�t��1 correspond to disordered systems in the absence of
pulses. �Green� Bouncing curves represent disordered systems sub-
jected to the DD sequence �7�; they closely coincide with the �red�
bouncing curves obtained with the clean Heisenberg system. Top
panels: Gaussian random on-site disorder, �dn
=0 and �dndm

=d2�n,m with d /J=0.2. Average over 20 realizations. Bottom pan-
els: d6,7 /J=0.65 and dn=0 for n�6,7. Left-hand panels:
�t /J=0.25. Right-hand panels: �t /J=1.0. Data is acquired after
every Tc=2�t.

TRANSPORT CONTROL IN LOW-DIMENSIONAL SPIN-1 /2… PHYSICAL REVIEW E 78, 031125 �2008�

031125-5



spins and are only viable if means exist to distinguish them.
The suggested pulse sequence is

U�Tc = 8�t� = P8U��t� ¯ P2U��t�P1U��t� ,

where

P1 = P3 = �
k=0

��L−1�/4�
e−i�S1+4k

x �
k=0

��L−2�/4�
e−i�S2+4k

x
,

P2 = P4 = �
k=0

��L−3�/4�
e−i�S3+4k

y �
k=0

��L−4�/4�
e−i�S4+4k

y
,

P5 = P7 = �
k=0

��L−2�/4�
e−i�S2+4k

x �
k=0

��L−3�/4�
e−i�S3+4k

x
,

P6 = P8 = �
k=0

��L−1�/4�
e−i�S1+4k

y �
k=0

��L−4�/4�
e−i�S4+4k

y
, �8�

At any time t8p= pTc=8p�t, we obtain H̄=HNN /2+O��t�.
Apart from a rescaling factor 1 /2, we recover the Hamil-
tonian for a clean Heisenberg model with only nearest-
neighbor interactions up to first order in �t. Notice that the
sequence cancels both next-nearest-neighbor interactions and
one-body terms. The Hamiltonians for the intervals of free
evolution are given in the Appendix. Since they no longer
conserve Sz, simulations involving this pulse sequence need
to consider the whole Hilbert space of dimension 2L.

V. CONCLUSION

The purpose of this work was twofold: To contribute to
the ongoing discussion about transport properties of quantum
many-body systems and to study the possibility of control-
ling transport behavior by resorting to dynamical decoupling
methods.

Our conclusions are based on the analysis of the transport
of local magnetization in isolated finite spin-1 /2 systems
with free boundary conditions and at zero temperature. Dif-
fusive transport is associated with the exponential decay of
the local magnetization and ballistic transport with its bounc-
ing behavior. Under these conditions, it was shown that a
one-to-one correspondence between quantum chaos and nor-
mal transport does not necessarily hold; instead, different
integrability-breaking terms may lead to both ballistic and
diffusive behavior.

Dynamical decoupling sequences capable of suppressing
the terms of the Hamiltonian leading to quantum chaos were
proposed. The goal was to approach the ballistic transport
behavior of local magnetization obtained with the integrable
system. This was achieved by applying pulses separated by
intervals smaller than the reciprocal interaction strength, as
illustrated for two cases of on-site disorder: Random defects
and two defects in the middle of the chain.

The manipulation of transport behavior in systems sub-
jected to dynamical decoupling methods is a topic that de-
serves further exploitation. In particular, the analysis of heat
transport in systems coupled to two heat reservoirs at differ-
ent temperature is one of our future goals. Also important is
the identification of real systems where these ideas could be
tested experimentally, a possible good candidate being a
crystal of fluorapatite, as proposed in studies of information
transport �36�.
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APPENDIX: SUPPRESSING NEXT-NEAREST NEIGHBOR
INTERACTIONS

The pulses from Eq. �8� lead to the propagator

U�Tc� = P8U��t�P7U��t�P6U��t�P5U��t�P4U��t�P3U��t�P2U��t�P1U��t�

= �P8P7 ¯ P1��P7 ¯ P1�†U��t��P7 ¯ P1� ¯ P1
†U��t�P1U��t�

= 1 exp�− iH8�t� ¯ exp�− iH2�t�exp�− iH1�t� ,

where, for L even and by using the notation,

za = �
k=0

��L−1�/4�
�1+4kS1+4k

z , zb = �
k=0

��L−2�/4�
�2+4kS2+4k

z ,

zc = �
k=0

��L−3�/4�
�3+4kS3+4k

z , zd = �
k=0

��L−4�/4�
�4+4kS4+4k

z ,

X1o = �
k=1

L/2

S2k−1
x S2k

x , X1e = �
k=1

L/2−1

S2k
x S2k+1

x , X2 = �
n=1

L−2

Sn
xSn+2

x ,

Y1o = �
k=1

L/2

S2k−1
y S2k

y , Y1e = �
k=1

L/2−1

S2k
y S2k+1

y , Y2 = �
n=1

L−2

Sn
ySn+2

y ,

Z1o = �
k=1

L/2

S2k−1
z S2k

z , Z1e = �
k=1

L/2−1

S2k
z S2k+1

z , Z2 = �
n=1

L−2

Sn
zSn+2

z ,
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the Hamiltonians during the intervals of free evolutions are

H1 = + za + zb + zc + zd + X1o + X1e + Y1o + Y1e + Z1o

+ Z1e + X2 + Y2 + Z2,

H2 = − za − zb + zc + zd + X1o + X1e + Y1o − Y1e + Z1o

− Z1e + X2 − Y2 − Z2,

H3 = − za − zb − zc − zd + X1o − X1e + Y1o − Y1e + Z1o

+ Z1e − X2 − Y2 + Z2,

H4 = + za + zb − zc − zd + X1o − X1e + Y1o + Y1e + Z1o

− Z1e − X2 + Y2 − Z2,

H5 = + za + zb + zc + zd + X1o + X1e + Y1o + Y1e + Z1o

+ Z1e + X2 + Y2 + Z2,

H6 = + za − zb − zc + zd + X1o + X1e − Y1o + Y1e − Z1o

+ Z1e + X2 − Y2 − Z2,

H7 = − za − zb − zc − zd − X1o + X1e − Y1o + Y1e + Z1o

+ Z1e − X2 − Y2 + Z2,

H8 = − za + zb + zc − zd − X1o + X1e + Y1o + Y1e − Z1o

+ Z1e − X2 + Y2 − Z2.

The sum of these eight intervals leads to the cancellation of
the one-body terms and the next-nearest-neighbor interac-

tion, so that H̄=HNN /2+O��t�.
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